OKLAHOMASTATE UNIVERSITY
 SCHOOLOF ELECTRICALANDCOMPUTER ENGINEERING SCHOOLOFMECHANICALANDAEROSPACEENGINEERING

ECEN 4413/MAE 4053 Automatic Control Systems

Spring 2010

Midterm Exam \#2

Choose any four out of five problems.
Please specify which four listed below to be graded

1) \qquad ; 2) \qquad ; 3) \qquad ; 4) \qquad ;

Name : \qquad

E-Mail Address: \qquad

Problem 1:

Write the equation of motion for the linear translational system shown below. Draw the state diagram using a minimum number of integrators. Write the state equation from the state diagram. Find the transfer functions $Y_{1}(s) / F(s)$ and $Y_{2}(s) / F(s)$. Set $M g=0$ for reaching asymptotic equilibrium.

Problem 2:

Choose state variables appropriately and then derive the transfer function $V(s) / E(s)$ for the given RC ladder circuit given below where e is the input source and V is the output response (note $R_{1} \neq R_{2} \neq \cdots \neq R_{n}$ and $C_{1} \neq C_{2} \neq \cdots \neq C_{n}$).

Problem 3:

For the system described by input-output differential equation given below,

$$
\left\{\begin{array}{c}
\ddot{y}_{1}+3 \dot{y}_{1}+2\left(y_{1}-y_{2}\right)=u_{1}+\dot{u}_{2} \\
\dot{y}_{2}+3\left(y_{2}-y_{1}\right)=u_{2}+2 \dot{u}_{1}
\end{array}\right.
$$

find the state space representation in the form of

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+b u(t), \\
& y(t)=c x(t)+d u(t),
\end{aligned}
$$

where input is $u(t)=\left[\begin{array}{ll}u_{1}(t) & u_{2}(t)\end{array}\right]^{T}$ and output is $y(t)=\left[\begin{array}{ll}y_{1}(t) & y_{2}(t)\end{array}\right]^{T}$.
HINT: Choose state variables in such a way including u_{2} and u_{1} appropriately, so when dot equations are taken, the \dot{u}_{2} and \dot{u}_{1} will be absorbed.

Problem 4:

For the state variable description,

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right] x(t)+\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] u(t), \\
& y(t)=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right] x(t)
\end{aligned}
$$

if $u(t)=e^{-3 t} u_{s}(t)$, where $u_{s}(t)$ is the unit step function and initial conditions are all zeros, find $y(t)$.

Problem 5:

Find the region of K in $G(s)$ for which the G-Configuration (with unity feedback) will be stable, specifically $G(s)=\frac{K\left(s^{2}+15 s+55\right)}{s\left(s^{2}+s+10\right)}$.

